$c \in R$ ની મહતમ કિમંત મેળવો કે જેથી સુરેખ સમીકરણો $x - cy - cz = 0 \,\,;\,\, cx - y + cz = 0 \,\,;\,\, cx + cy - z = 0 $ ને શૂન્યતર ઉકેલ છે .
$-1$
$0.5$
$2$
$0$
જો $\omega $ એ એકનું ઘનમૂળ હોય તો સમીકરણ $\left| {\begin{array}{*{20}{c}}
{x + 2}&\omega &{{\omega ^2}} \\
\omega &{x + 1 + {\omega ^2}}&1 \\
{{\omega ^2}}&1&{x + 1 + \omega }
\end{array}} \right| = 0$ નું બીજ મેળવો.
$\left| {\,\begin{array}{*{20}{c}}{41}&{42}&{43}\\{44}&{45}&{46}\\{47}&{48}&{49}\end{array}\,} \right| = $
સમીકરણ સહતિ $x+y+z=\alpha$ ; $\alpha x+2 \alpha y+3 z=-1$ ; $x+3 \alpha y+5 z=4$ સુસંગત થાય તેવી $\alpha$ ની કિંમતોની સંખ્યા ............ છે.
જો સમીકરણ સંહતિ $2 x+y-z=3$ ; $x-y-z=\alpha$ ; $3 x+3 y+\beta z=3$ ના ઉકેલની સંખ્યા અનંત છે તો $\alpha+\beta-\alpha \beta$ ની કિમંત મેળવો.
$k$ ની કઈ કિમંત માટે આપેલ સમીકરણોનો શૂન્યતર ઉકેલ મળે ?
$x + ky + 3z = 0$ ; $3x + ky + 2z = 0$ ; $2x + 3y + 4z = 0$